DISTRIBUTION THE DAILY NUMBER OF AIR EFFECTIVE TEMPERATURE ACCORDING TO MISSENARD IN BATUMI BY MONTH

*,**Japaridze N., ***,****Kartvelishvili L., **,*****Khazaradze K., ******Chkhitunidze M.,
******Nikolaishvili M., *****Revishvili A.

********Georgia National Environmental Agency, Tbilisi, Georgia

***Ministry of Internally Displaced Persons from Occupied Territories, Labour, Health and Social Affair of Georgia,
Tbilisi, Georgia

****Institute of Hydrometeorology of the Georgian Technical University, Tbilisi, Georgia

*****Georgian National Environmental Agency, Tbilisi, Georgia

******Georgian State Teaching University of Physical Education and Sport, Tbilisi, Georgia
******Mikheil Nodia Institute of Geophysics of Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
n.japaridze@tsmu.edu

Abstract: The paper presents data on distribution of the number of daily mean and maximum values of air effective temperature according to Missenard in Batumi by month in 2018-2023. In particular, on average, for the mean daily values of effective air temperature with the category "Comfortable", the largest number of days are observed from June to September (15, 18, 17 and 13, respectively). For the maximum daily values of effective temperature – in June, September and October (14, 13 and 12, respectively).

Key words: Effective temperature, bioclimate, human health, ecology.

Introduction

Information on the bioclimatic characteristics of the territory is important both in terms of determining the degree of their impact on public health and promoting the development of the resort and tourism industry [1–7], etc. There are many simple and complex bioclimatic indices (a combination of temperature and relative humidity, wind speed and other meteorological parameters) [1,4-13], one of which is the frequently used effective air temperature according to Missenard ET [6,11,13,14,15].

For example, in [13], the results of a statistical analysis of average monthly data on ET values in the Autonomous Republic of Adjara and the Kakheti region are presented. The intra-annual distribution of ET values was studied, their repeatability by ET categories, etc. was obtained.

In the work [15] the results of statistical analysis of the daily mean and maximum values of effective air temperature (ET_mean and ET_Max respectively) in Batumi in 2018-2023 are presented. In particular, it was found that in cold periods the highest repeatability of ET_Mean values is in the "Cold" category (50.0%), and the lowest is in the "Comfortable" category (0.8 %). The highest repeatability of ET_Max values is in the "Cold" category (41.1 %), and the lowest is in the "Hot" category (0.2%).

In warm season the highest repeatability of ET_Mean values is in the "Comfortable" category (34.3%), and the lowest is in the "Very cold" category (1.4 %). The highest repeatability of ET_Max values is in the "Hot" category (25.1 %), and the lowest is in the "Very cold" category (0.3%).

This work is part of the investigation [15]. Below are the results of a study on distribution of the number of daily mean and maximum values of air effective temperature according to Missenard in Batumi by month in 2018-2023.

Study area, material and methods

Study area – Batumi (the capital of the autonomous republic of Adjara, Georgia).

The work uses data from the Georgian National Environment Agency on average daily and urgent (at 4 p.m. local time) values of temperature (T), relative humidity (RH) and wind speed (V) for the period from 2018 to 2023.

The air effective temperature according to Missenard was calculated using the formula [14]:

$$ET = 37 - (37 - T)/(0.68 - 0.0014 \cdot RH + 1/(1.76 + 1.4 \cdot V^{0.75})) - 0.29 \cdot T \cdot (1 - 0.01 \cdot RH)$$

The categories of ET are presented in Table 1.

Table 1. The degree of human thermal sensation (category) depending on the values of air effective temperature.

ET	<1°C	1-9°	9-17°	17-21°	21-23°	23-27°	>27°
ET Category	Very cold	Cold	Cool	Comfortable	Warm	Hot	Very hot

In the proposed work the analysis of data is carried out with the use of the standard statistical analysis methods. The following designations will be used below: ET_Mean – daily average air effective temperature; ET Max – daily maximum air effective temperature.

Results and discussion

Results in Fig. 1 and 2 are presented.

In Fig. 1 data about the number of days with different categories of ET_Mean in Batumi from January to December are presented.

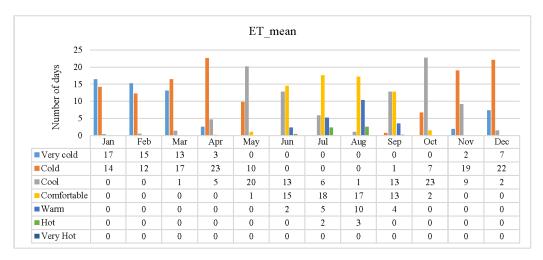


Fig. 1. Number of days with different categories of ET Mean in Batumi from January to December.

In particular, as follows from Fig. 1, on average during the year for mean daily values of effective air temperature with the "Comfortable" category, the greatest number of days are observed from June to September (15, 18, 17 and 13, respectively), etc.

In Fig. 2 data about the number of days with different categories of ET_Max in Batumi from January to December are presented.

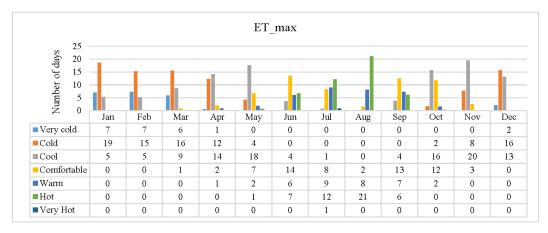


Fig. 2. Number of days with different categories of ET Max in Batumi from January to December.

In particular, as follows from Fig. 2, on average during the year for max daily values of effective air temperature with the "Comfortable" category, the greatest number of days are observed from June, September and October (14, 13, and 12, respectively). The highest number of days of ET_Max with the "Hot" category is observed in August (21 days), etc.

Conclusion

The paper presents data on the number of daily mean and maximum values of air effective temperature according to Missenard in Batumi for each month of year, which, in addition to scientific interest, may also have practical significance for planning resort and tourist activities depending on the seasons of the year. In the future, we plan to continue similar studies for different regions of Georgia.

Acknowledgement. The authors are grateful to the chief of the atmospheric physics department of M. Nodia Institute of Geophysics A. Amiranashvili for assistance in the fulfillment of this work.

References

- 1. Kartvelishvili L., Tatishvili M., Amiranashvili A., Megrelidze L., Kutaladze N., Weather, Climate and their Change Regularities for the Conditions of Georgia. // Monograph, Publishing House "UNIVERSAL", Tbilisi 2023, 406 p., https://doi.org/10.52340/mng.9789941334658
- Japaridze N., Khazaradze K., Studies in the Field of the Influence of Natural and Anthropogenic Environmental Factors on Human Health in Georgia: Current Status and Planned Works. // Int. Sc. Conf. "Natural Disasters in Georgia: Monitoring, Prevention, Mitigation". Proc., ISBN 978-9941-13-899-7, Publish House of Iv. Javakhishvili Tbilisi State University, December 12-14, Tbilisi, 2019, pp. 201-204. http://109.205.44.60/bitstream/123456789/8671/1/47_Conf_NDG_2019.pdf
- 3. Japaridze N., Khazaradze K., Chkhitunidze M., Revishvili A., A Brief Overview of Research Conducted by M. Nodia Institute of Geophysics, TSU Together with Medical Organizations in the Field of "Health of the Population of Georgia and Environment" Over the Past 10 Years. // Int. Sc. Conf. "Geophysical Processes in the Earth and its Envelopes", Proceedings, Publish House of Iv. Javakhishvili Tbilisi State University, November 16-17, Tbilisi, 2023, pp. 337-343. http://dspace.gela.org.ge/handle/123456789/10469
- 4. Amiranashvili A., Bolashvili N., Kartvelishvili L., Liparteliani G., Tsirgvava G., Holiday Climate Index in Kvemo Kartli (Georgia). // Georgian Geographical Journal, E-ISSN: 2667-9701, 24(1), 2024, pp. 35-46. https://doi.org/10.52340/ggj.2024.04.01.05
- 5. Amiranashvili A., Kartvelishvili L., Matzarakis A., Variability of the Holiday Climate Index in Tsalka (Georgia). // Journal of the Georgian Geophysical Society, e-ISSN: 2667-9973, p-ISSN: 1512-1127, Physics of Solid Earth, Atmosphere, Ocean and Space Plasma, v. 27(1), 2024, pp. 77–90. https://ggs.openjournals.ge/index.php/GGS/article/view/7986
- Amiranashvili A.G., Japaridze N.D., Khazaradze K.R., On the Connection of Monthly Mean of Some Simple Thermal Indices and Tourism Climate Index with the Mortality of the Population of Tbilisi City Apropos of Cardiovascular Diseases. Journal of the Georgian Geophysical Society, ISSN: 1512-1127, Physics of Solid Earth, Atmosphere, Ocean and Space Plasma, v. 21(1), Tbilisi, 2018, pp.48 -62. http://www.jl.tsu.ge/index.php/GGS/article/view/2489
- Khazaradze K.R., Chkhitunidze M.S., Japaridze N.D., Effects of Variations of the Monthly Mean Max Air Temperature on the Population Health of Kakheti Region of Georgia. // Int. Sc. Conf. "Modern Problems of Ecology" Proceedings, ISSN 1512-1976, v. 7, Tbilisi-Telavi, Georgia, 26-28 September, 2020, pp. 356-359. http://www.dspace.gela.org.ge/handle/123456789/8836
- 8. Aliyev V., Amiranashvili A., Kartvelishvili L., Matzarakis A, Tatishvili M., Comparative Analysis of the Variability of Daily Minimum, Maximum and Mean Air Temperature in Baku and Tbilisi in 2005-2024. // Int. Journal of Sustainability and Rick Control, e-ISSN: 3104-8358, p-ISSN: 3104-834X, Baku, Azerbaijan, Vol. 1, No. 2 (2), September 2025, pp. 63-70. DOI: https://doi.org/10.64599/GDOF7452
- 9. Aliyev V., Amiranashvili A., Kartvelishvili L., Matzarakis A., Tatishvili M., Variability of Monthly Average Values of Daily Minimum, Maximum and Mean Air Temperature in Baku and Tbilisi IN 2005-2024. // Int. Journal of Sustainability and Rick Control, e-ISSN: 3104-8358, p-ISSN: 3104-834X, Baku, Azerbaijan, Vol. 1, No. 3 (3), December 2025, (in Press).
- 10. Amiranashvili A.G., Revishvili A.A., Khazaradze K.R., Japaridze N.D., Connection of Holiday Climate Index with Public Health (on Example of Tbilisi and Kakheti Region, Georgia). Journal of the Georgian Geophysical Society, e-ISSN: 2667-9973, p-ISSN: 1512-1127, Physics of Solid Earth, Atmosphere, Ocean and Space Plasma, v. 24 (1), 2021, pp. 63-76. DOI: https://doi.org/10.48614/ggs2420212884

- 11. Amiranashvili A., Japaridze N., Kartvelishvili L., Khazaradze K., Revishvili A., Preliminary Results of a Study on the Impact of Some Simple Thermal Indices on the Spread of COVID-19 in Tbilisi. // Journal of the Georgian Geophysical Society, e-ISSN: 2667-9973, p-ISSN: 1512-1127, Physics of Solid Earth, Atmosphere, Ocean and Space Plasma, v. 25(2), 2022, pp. 59–68. DOI: https://doi.org/10.48614/ggs2520225961
- 12. Amiranashvili A., Bliadze T., Japaridze N., Khazaradze K., Revishvili A., Angstrom Fire Index as a Bioclimatic Indicator (Using the Example of the Impact on the Spread of Covid-19 in Tbilisi). // Int. Sc. Conf. "Geophysical Processes in the Earth and its Envelopes", Proceedings, Publish House of Iv. Javakhishvili Tbilisi State University, November 16-17, Tbilisi, 2023, pp. 328-331. http://openlibrary.ge/handle/123456789/10467
- 13. Amiranashvili A., Japaridze N., Kartvelishvili L., Megrelidze L., Khazaradze K., Statistical characteristics of the monthly mean values of air effective temperature on Missenard in the Autonomous Republic of Adjara and Kakheti (Georgia). // Trans. of Mikheil Nodia institute of Geophysics, ISSN 1512-1135, vol. 69, Tb., 2018, pp. 118 138, (in Russian). http://dspace.gela.org.ge/bitstream/123456789/7509/1/IG T 69 2018 Red 13.pdf
- 14. Missenard F.A., Température effective d'une Atmosphere Généralisation Températurerés ultante d'un Milieu. // Encyclopédie in dustrielleet Commerciale, Etude physiologique et technique de la ventilation. Librerie de l'Enseignement Technique, Paris, 1933, 131-18.
- 15. Japaridze N., Kartvelishvili L., Khazaradze K., Chkhitunidze M., Nikolaishvili M., Revishvili A., Statistical Characteristics of the Daily Values of Air Effective Temperature According to Missenard in Batumi. // Int. Sc. Conf. "Complex Geophysical Monitoring in Georgia: History, Modern Problems, Promoting Sustainable Development of the Country", Proceedings, ISBN 978-9941-36-272-9, Publish House of Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia, October 17-19, 2024, pp. 133 136.
 - http://dspace.gela.org.ge/bitstream/123456789/10624/1/34_MM-180.pdf