ОСОБЕННОСТИ ОБРАЗОВАНИЯ И РОСТА ПУЗЫРЬКОВ ПАРА ПРИ ЗАМЕРЗАНИИ И КИПЕНИИ ВОДЫ В ОГРАНИЧЕННОМ ОБЪЁМЕ

А. И. Гвелесиани

Институт геофизики им. Михаила Нодиа, ТГУ

1. Как показывают эксперименты, при низких температурах зависимость плотности ледяного отложения от температуры подложки, близка к линейной. Тогда в аналитической зависимости плотности льда $\rho_{\text{сл}}$ от параметров среды температурная часть выделяется в виде поправочного множителя $f(T_1)$, а именно $\rho_{\text{сл}} = f(T_1)(r\ V_0)^\alpha$. Величина α колеблется между 0.65 и 0.77 в пределах значений температуры от $-5\ ^0\text{C}$ до $-30\ ^0\text{C}$, а $f(T_1)\sim 1/\ T_1^{0.7}$. Маклин (1962) получил следующую формулу зависимости между плотностью ледяного отложения, радиусом капли, скоростью её столкновения с подложкой и средней температурой поверхности подложки:

$$\rho_{c_n} = 0.11 \left(-r \, V_0 \, T_1^{-1} \right)^{0.76}. \tag{1}$$

Известно, что в закритическом режиме роста градины переохлаждённые капли, сталкивающиеся с ледяной подложкой, примерзают к ней индивидуально (Маклин, 1962). Верхний предел плотности слоя льда, ρ_{cr} , можно определить в случае плотной упаковки малых шаров на поверхности сферы (Иванов, 1964):

$$\rho_{c_{\pi}} = \frac{2}{3} \frac{d_{\Gamma}}{d_{\Gamma} + 2d_{\kappa}} \rho_{0}, \quad \rho_{0} = 0.92 \, \text{\Gamma/cm}^{3}, \tag{2}$$

где d_r – диаметр градины, d_κ – диаметр капли. При $d_r >> 2$ d_κ , $\rho_{cn} = 0.61$ г/см³. где d_r – диаметр градины, d_κ – диаметр капли. При $d_r >> 2$ d_κ , $\rho_{cn} = 0.61$ г/см³. Автор получил $\rho_{cn} = 0.58$ г/см³. Однако неверно утверждение автора о скачкообразном изменении плотности ρ_{cn} отложения льда при переходе от высокой плотности губчатого льда ко льду с малой плотностью. Анализ экспериментов показал отсутствие скачка плотности и наличие непрерывности в значениях плотности отлагающегося льда от 0.92 г/см³ до 0.58 г/см³.

В работе (Качурин, Гашин и Осипов,1962) экспериментально было найдено значение критической толщины слоя воды на плоской поверхности $h_{\kappa p}$, принимаемое величиной h_p для воды. Анализ опытных данных и измерений в облаках (Мазин, 1957) показал, что при отложении прозрачного льда на подложке $h_p < 0.1$ см, а при отложении непрозрачного льда и инея $h_p > 0.1$ см. Можно заключить, что критической толщиной для воды является $h_{\kappa p} = 0.1$ см 0., при которой происходит смена режимов "сухого" и "мокрого" роста, или же, в терминах авторов, вблизи толщины слоя воды около 0.1 см происходит переход от закритического режима к докритическому и наоборот.

2. В работе (Качурин и Гашин, 1968) дан детальный сравнительный анализ результатов экспериментов Маклина (1962) и собственных экспериментов. Показано, что параметр rv_0/T_1 , найденный Маклиным для определения плотности отлагающегося льда, получается как частный случай из теории обледенения самолётов Качурина (1962). Если

$$a^{-1/b} \left(\frac{vq \, \overline{E}}{\rho} \right)^{1/b} / \left(T_0 - T_1 \right) << 1 ,$$
 (3)

где a и b – постоянные, тогда

$$h_p = \lambda \rho (T_0 - T_1) / \rho_{\scriptscriptstyle A} L_{\scriptscriptstyle A} v q \overline{E} \,. \tag{4}$$

В тех случаях, когда средне-кубический радиус капель меняется пропорционально величине водности воздушного потока

$$r \approx const \, q \overline{E}$$
 (5)

и, кроме того, $\lambda \rho / \rho_{_{\scriptscriptstyle R}} L_{_{\scriptscriptstyle R}} = const$, то нетрудно видеть, что

$$h_{p} \sim rv_{0} / T_{1} \tag{6}$$

Если одно из условий (3) или (5) окажется невыполненным, то критерии h_p и rv_0/T_1 перестают быть эквивалентными. Отсюда следует, что формула Маклина (1), где, в отличие от формулы Качурина (6), фигурирует $(-r\,V_0\,T_1^{-1})^{0.76}$ выполняется в некоторых частных случаях. Было показано, что какой-либо определённой зависимости между средне-кубическим радиусом капель и эффективной водностью не существует. Для случаев: (а) $r\sim q\overline{E}$; (б) $r\sim 1/q\overline{E}$; (в) общий случай с учётом всех имеющихся данных по Маклину (1962), было показано, что в случае (а) корреляция (ρ_{cn},h_p) на 0.3 больше корреляции $(\rho_{cn},rv_0/T_1)$, в случае (б) выше на 0.65, а в случае (в) примерно на 0.26. На рис. 1 представлена графическая зависимость $(\rho_{cn},1/h_p)$, построенная по известным к тому времени данным. При значении $1/h_p=5$ см⁻¹ или $h_p=0.2$ см наблюдается спад плотности, соответствующий переходу от монокристаллической структуры льда к поликристаллической. Этот переход, как видим, происходит при значении h_p большем, чем критическая толщина $h_k=0.1$ см, так как она разделяет чистый лёд от всех других видов ледяных отложений. Из-за малых различий в плотностях отложений льда в окрестностях $h_p=0.1$ см не удаётся обнаружить эту границу, так как разность между значениями соответствующих плотностей меньше, чем средний разброс точек.

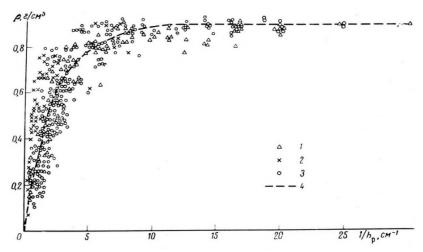


Рис. 1. Зависимость плотности отлагающегося льда от величины параметра $1/h_p$ (Качурин, Гашин, 1968).

Вид зависимости (ρ_{cn}, h_p) , представленной на рис. 1, аппроксимируется эмпирической формулой:

$$\rho_{cn} = \rho_0 \left(1 - e^{-0.4/h_p} \right). \tag{7}$$

Резюмируя, авторы заключают, что параметр Маклина (1962) не позволяет судить о структуре и плотности ледяного отложения, образующегося в естественных условиях при обледенении объектов в облаках и в аэродинамических трубах и образовании града, так как условие (6) выполняется лишь в отдельных частных случаях.

Из формул (2) и (7) видно, что между размерами капли и градины существует связь вила:

$$d_{\kappa} = \frac{2 - 3(1 - e^{-0.4/h_p})}{6(1 - e^{-0.4/h_p})} d_{\Gamma}. \quad (*)$$

Для сферической ледяной поверхности с радиусом кривизны R', согласно Гвелесиани (1967, 1970), вместо h_p следует пользоваться формулой:

$$h^* = \frac{h_p}{1 - (h_p / R')^2 - (h_p / R')^3}.$$
 (**)

3. В работе Браунскоума и Халлета (1967) изучался рост крупы и инея. На ранних стадиях роста, благодаря статистической флюктуации скорости поступления облачных капель на предмет, появляются неровности, эффективность захвата которых выше, чем у гладкой поверхности, и они продолжают расти, очевидно, быстрее. Образование цепочек и, соответственно, малая плотность льда, наблюдаемая Маклиным (1962, 1968), основана на этом эффекте. При отсутствии этого эффекта в случае крупных капель плотность будет зависеть от степени деформации капель. Не рассматривая здесь вопроса образования инея из паровой фазы, отметим всё же, что иней с низкой плотностью можно образовать в результате следующих трёх процессов: (1) при случайном осаждении на кристаллах, растущих в основном из паровой фазы; (2) повышенной эффективностью осаждения на выступах; (3) роста из пара, образованного в соседстве с замёрзшей каплей.

Как показали эксперименты (Brownscombe, Hallett 1967), визуальная оценка непрозрачности льда сильно зависит от распределения пузырьков воздуха по размерам. На рис. 2 дана экспериментальная кривая зависимости между скоростью роста радиуса градины (G) и радиусом пузырька (r).

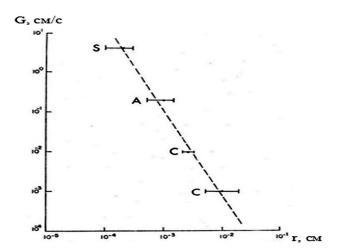


Рис. 2. Зависимость между скоростью роста радиуса градины (G) и радиусом воздушного пузырька (r), (Brownscombe, Hallett, 1967).

Представим аналитическую зависимость экспериментальной кривой Браунскоума и Халлета (рис. 2) в виде радиуса роста воздушного пузырька во времени в процессе кристаллизации воды на градине по известной формуле из аналитической геометрии:

$$\frac{x}{a} + \frac{y}{b} = 1,\tag{8}$$

где $x = \lg G$, $y = \lg r$; $\lg a = 2$, $\lg b = 4$ соответственно отрезки, отсекаемые наклонной прямой рис. 2 соответственно на осях $x = \lg G$, $y = \lg R$. Вместо (8) получаем:

$$\frac{\lg r}{2} + \frac{\lg G}{4} = 1,\tag{9}$$

Отсюда получаем эмпирическую зависимость радиуса воздушно-парового пузырька в замерзающей воде (градины) от скорости перемещения фронта кристаллизации:

$$r^2 = 10^4 G^{-1} \tag{10}$$

или

$$r = 10^2 G^{-1/2}. (11)$$

Отсюда следует, что радиус воздушного пузырька, выделяющегося перед фронтом кристаллизации воды, обратно пропорционален корню квадратному из скорости замерзания воды.

4. Приведём для иллюстрации графическое представление временной зависимости радиуса растущего парового пузыря в воде при перегреве $T=103,1\,^{0}C$, по Релею (1917), которое сильно расходится с экспериментом (Dergarabedian, 1953) — и по теории Plesset, Zwick (1952), хорошо согласующееся с (Dergarabedian, 1953) (см. Гвелесиани, 2018).

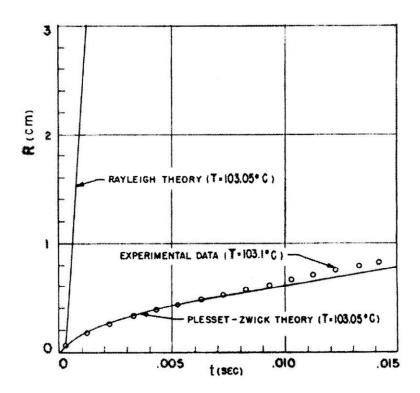


Рис. 3. Сравнение теории с экспериментом. Сплошная прямая линия построена по (Rayleigh, 1917)., сплошная изогнутая кривая – по (Plesset, Zwick, 1952), треугольниками отмечены экспериментальные точки (Dergarabedian, 1953).

4.1. Динамика пузырей в воде описывается обобщённым уравнением Релея-Плессета (Brennen, 1995):

$$\frac{p_n(t) - p_{\infty}(t)}{\rho_{\varepsilon}} = R \frac{d^2 R}{dt^2} + \frac{3}{2} \left(\frac{dR}{dt}\right)^2 + \frac{4\nu_{\varepsilon}}{R} \frac{dR}{dt} - \frac{2\sigma}{\rho_{\varepsilon} R}, \quad (14)$$

где $p_{_n},\,p_{_\infty}-$ соответственно, давление пара в пузыре, внешнее давление; $v_{_g}-$ кинематическая вязкость воды, $\sigma-$ поверхностное натяжение воды. $\rho_{_g}-$ плотность воды.

Согласно Релею (1917) $R \sim t$, а по Плессету и Цвику (1952) $R \sim t^{1/2}$ (см. рис. 3), в полной же форме (Brennen, 1995) зависимость радиуса парового пузыря R = f(t) следующая:

$$R = \frac{1}{2C(1/2)} Jb \left(\alpha_e t\right)^{1/2},$$
 (15)

где Ja – число Джэкоба и C(1/2) – константа, соответственно равные:

$$Ja = \frac{\rho_{_{\theta}}c_{_{P_{\theta}}}\Delta T}{\rho_{_{n}}L}, \quad C(1/2) = \frac{1}{2}(3/\pi)^{1/2}\int_{0}^{1} \frac{z^{1/2}dz}{(1-z^{3})^{1/2}}.$$
 (16)

4.2. Уравнение динамики пузыря по Релею-Плессету можно привести к фокусировке энергии, если пренебречь всеми членами на правой стороне уравнения (14), т.-е. рассмотреть уравнение:

$$R\frac{d^2R}{dt^2} + \frac{3}{2} \left(\frac{dR}{dt}\right)^2 = 0. \tag{17}$$

Обозначая dR/dt=X, будем иметь $R\,dX/dt+3/2X^2=0$, откуда получаем решение вида $R\sim t^{2/3}$, занимающее промежуточное положение между вышеупомянутыми решением Релея $R\sim t$, и решением Плессет-Цвика $R\sim t^{1/2}$ (см. также Lohse ,2003) .

4.3. В работе Гвелесиани (2018) теоретически рассматривался процесс роста пузырька пара на основе обобщённого уравнения Релея-Плессета как вариационная задача, согласно которой уравнение динамики парового пузыря (14) сводится к уравнению Эйлера-Пуассона вида

$$R^2 R'' = -\frac{2\sigma}{\rho_I}. (16)$$

В данном случае тем же способом энергетической фокусировки, т. е. приравниванием левой части (16) нулю, интегрируем полученное дифференциальное уравнение

$$R^2 R'' = 0. (17)$$

Имеем экстремаль:

$$R \sim t$$
, (18)

совпадающую с решением Релея (1917). В первом случае (переохлаждённой воды) перед фронтом кристаллизации выделяются пузырьки воздуха. во втором случае пузырьки воздуха выделяются из перегретой воды на стенках сосуда (или в объёме на частицах примеси) ускоренно до завершающего взрывного кипения воды.

Наконец, собирая вместе полученные результаты, представим их в виде таблицы 1.

Таблица 1. Зависимость радиуса пузырька пара (R) от времени при кипении воды (1-6)и (r) при кристаллизации (7); (*) – обозначены экспериментальные работы

1	2	3	4	5	6	7
Rayleigh	Plessett-	Dergarabedian.	Brennen	Gvelesiani	Гвелесиани	Brownscombe,
1917	Zwick, 1952	1953*	1995	2018	2019	Hallett. 1967*
$R \sim t$	$R \sim t^{1/2}$	$R \sim t^{1/2}$	$R \sim t^{1/2}$	$R \sim t$	$R \sim t^{2/3}$	$r = 10^2 G^{-1/2}$
					,	

Литература

- 1. Гвелесиани А. И. Некоторые вопросы эволюции градовых частиц. Диссертация на соискание уч. степени кандидата физико-математических наук. Ленинград /Фонды ЛГМИ, 1970, 211 С.
- 2. Гвелесиани А. И. Статистические и тепловые свойства параметров геофизических термодинамических систем. Труды Института геофизики им. М. Нодиа ТГУ им. Ив. Джавахишвили, т. LXIX, 2018, с. 153-174.
- 3. Качурин Л. Г. К теории обледенения самолётов. Изв. АН СССР, т. 4, № 1, 1968.
- 4. Качурин Л. Г., Гашин Л. И. О плотности и структуре льда, растущего в потоке переохлаждённого аэрозоля. Изв. АН СССР, сер. геофиз., № 6, 1962.
- 5. Качурин Л. Г., Гашин Л. И., Осипов Ю. Г. Управление структурой кристаллов, растущих в потоке переохлаждённого аэрозоля. ДАН СССР, № 4, 1962.
- 6. Лейбензон Л. С. Об испарении капли в газовом потоке. Изв. АН СССР, сер. геоф.-геогр., N 3, 1940.
- 7. Махарашвили П. И. Некоторые результаты исследования структуры градин. Тр. ИГ АН ГССР, т. 28, 1972, c. 131-144.
- Фукс Н. А. Испарение и рост капель в газообразной среде. М.: Изд. АН СССР, 1960.
 Brennen Chr. E. Cavitation and bubble dynamics. Oxford University Press, 1995, 64 P.
- 10. Brownscombe J. L., Hallett J. Experimental and field studies of precipitation particles formed by the freezing of supercooled water. Quart. J. R. Met. Soc., v. 93, N 398, 1967.
- 11. Carte A. K. Air bubbles in ice. Proc. Phys. Soc., v. 77, N 495, 1961.
- 12. Dergarabedian P. The rate of growth of vapor bubbles in superheated water. ASME J. Appl. Mech. v. 20, 1953, pp. 537-545.
- 13. Gvelesiani A., Chiabrishili N. Laboratory modeling of thermals generation in geophysical environments by bubble boiling method. The Journal of the Georgian Geophysical Society, v. 16B, 2013, pp. 128-136.
- 14. Gvelesiani A. On the growth of vapour bubble in metastable liquid as variational problem. The Journal of the Georgian Geophysical Society, v. 21 B, 2018.
- 15. Knight Ch. A. On the mechanism of spongy hailstone growth. J. Atm. Sci., v. 25, N 3, 1968.
- 16. List R. Wachstum von Eiswassergemischen im Hagelkanal. Helv. Phys. Acta, v. 32, N 4, 1959.
- 17. Lohse D. Bubble puzzles. Physics Today. February 2003, pp. 36 41.
- 18. Macklin W. C. The density and structure of ice formed by accretion. Quart. J. R. Met. Soc., v. 88, 1962, p. 375.
- 19. Plesset M. S., Zwick S. A. A nonsteady heat diffusion problem with spherical symmetry. J. Appl. Phys., v. 23, No. 1, 1952, pp. 95-98.
- 20. Rayleigh, Lord. On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag., v. 34, 1917, pp. 94-98.

სასრული მოგულობის წყლის გაყინვის და დუღილისას ორთქლის ბუშტების წარმოშობის და ზრდის თავისებურებების შესახებ

ა. გველესიანი

რეზიუმე

ცნობილი და საკუთარი კვლევების საფუძველზე კომპლექსურად იხილება გარკვეული მოცულობის წყლის კრისტალიზაციის და დუღილის შედეგად გამოყოფილი ორთქლის ბუშტის რადიუსის დროში ზრდის სიჩქარის (G = dR/dt) პროცესი. წყლის ფაზურ გარდაქმნებთან დაკავშირებით მიღებული თეორიული დასკვნები დაპირისპირებულია მიღებულ სათანადო

ემპირიულ ფორმულებთან. ნაპოვნია რელეი-პლესეტის განტოლების ენერგრტიკულად ფოკუსირებული ამონახსნი $(R\sim t^{2/3})$, რომელიც იკავებს შუალედურ პოზიციას რელეის $(R\sim t)$ და პლესეტ-ცვიკის $(R\sim t^{1/2})$ ცნობილ ამონახსნებს შორის. მეტიც, ვარიაციული მეთოდით მიღებული ორთქლის ბუშტის რადიუსის ზრდის სიჩქარის ეილერ-პუასონის ენერგეტიკულად ფოკუსირებული განტოლების ამონახსნი ზუსტ თანხვდენაშია რელეის $(R\sim t)$ ამონახსნთან. წყლის კრისტალიზაციის შემთხვევაში დამოკიდებულება ორთქლის ბუშტის რადიუსის (r) და კრისტალიზაციის ფრონტის გავრცელების სიჩქარის (G) შორის შემდეგია: $r\sim G^{-1/2}$.

Об особенностях образования и роста пузырьков пара при замерзании и кипении воды в ограниченном объёме

А. И. Гвелесиани

Реферат

На основе известных и собственных исследований комплексно рассматривается проблема скорости роста радиуса пузырька пара (G=dR/dt) при кристаллизации и кипении конечного объёма воды. Исследование ведётся на основе уравнения Релея-Плессета с учётом ранее полученного автором уравнения Эйлера-Пуассона вариационным методом. Найдено энергетически-фокусированное решение уравнения Релея-Плессета для динамики парового пузырька при кипении воды ($R \sim t^{2/3}$), занимающее промежуточное место между известными решением Релея ($R \sim t$) и решением Плессета-Цвика ($R \sim t^{1/2}$). Более того, соответствующее энергетически-фокусированное уравнение Эйлера-Пуассона даёт решение, совпадающее с известным решением Релея ($R \sim t$). В случае кристаллизации зависимость радиуса (r) пузырька пара от скорости его распространения обратно-пропорциональная, ($r \sim G^{-1/2}$).

On the Peculiarities of the Vapour Bubbles Creation and Growth in Freezing and Boiling Volume Limited Water

A. Gvelesiani

Absract

On the base of well-known and own investigations of the problem of the vapour bubble radius growth velocity (G = dR/dt) during both of crystallization and boiling of pure water processes is considered. The investigation is under way by means of Rayleigh-Plesset differential equation and obtained earlier by variation method Euler-Poisson's equation. From energetically focused Rayleigh-Plesset differential equation it was found following solution: $R \sim t^{2/3}$, which takes intermediate place between well-known Rayleigh's solution ($R \sim t$) and Plesset-Zwick's ($R \sim t^{1/2}$) one. It is interesting, that corresponding Euler-Poisson's equation, being energetically focused, has solution similar Rayleigh's ($R \sim t$) dependence. In the case of crystallization the empirical dependence between the radius of bubble and crystallization rate is ($r \sim G^{-1/2}$).